International Journal of Chemical and Pharmaceutical Sciences 2017, Mar., Vol. 8 (1) ISSN: 0976-9390

Microwave assisted synthesis and antifungal studies of thiadiazole substituted pyrimidine compounds

¹ Karthic R*, ² Andrews B and ¹ Subramani K.

¹ PG& Research department of Chemistry, Islamiah College, Vaniyambadi, Tamilnadu, India.

² Department of Chemistry, Priyadarshini Engineering College, Vaniyambadi, Tamilnadu, India.

*Corresponding Author: E-Mail: karthicrm@gmail.com

Received: 26th Jan 2017, Revised and Accepted: 28th Jan 2017

ABSTRACT

Simple synthetic methods of 5-(5-amino-1,3,4-thiadiazol-2yl)-3,4-dihydro-6-methyl-4-phenylpyrimidin-2(1H)-one(3a-e) are described. Compound 1 is converted to carbothiamide 2 by reacting compound 1 with thiosemicarbazide in catalytic amount of acetone is irradiated with help of domestic microwave oven (200W) for 2 minutes. Compound 2 is act as a key intermediate for the final compounds. The compound 2 is converted to corresponding thiadiazole 3 by treatment with conc. H_2SO_4 and NH_3 . Structural elucidation is accomplished by IR, 1H and $^{13}CNMR$, Elemental analysis and GC-Mass spectral data of the synthesized compounds. Few of these Pyrimidine derivatives have been evaluated for their possible antifungal activity. Most of the tested compounds show significant antifungal activity.

Keywords: Pyrimidine, Thiadiazole, Carbothiamide, Thiosemicarbazide, Antifungal activity.

1. INTRODUCTION

Literature survey has revealed the importance of pyrimidine derivatives antimicrobial agent [1], which are found to be associated with variety of biological activities such as insecticidal, antimicrobial, antiviral pyrimidine derivatives [2-8] are powerful C-C bond formation process has wide applications for the preparation of diverse aminoalkyl derivatives. It involves the condensation of a compound capable of supplying one or more active hydrogen atom with aldehyde and primary or secondary amine. Mannich bases are physiologically reactive because of the basic function rendering the molecule soluble in aqueous solvent when it is transformed into ammonium salt. medicinally useful Mannich bases have been reviewed by Tromontini and Angiolini [9]. Besides this, considerable work has been reported on synthesis and pharmacological activities of Mannich bases for analogies. antispasmodic, anesthetic and antimalarial as well as intermediates in drug synthesis. properties of certain thiourea and urea derivatives have been reported in which the antiviral effect is attributed to the presence of an intact NH-(C=S)-NH and NH-(C=O)-NH grouping [10]. direction the synthesis and pharmacological study of Mannich bases of 3-and 5-mercapto derivatives

of 1,3,4-thiadiazole have been reported in literature [11-16]. Further, pyrimidine, fused heterocyclic pyrimidine derivatives dihydropyrimidones are well known for their potential biological activity such as antiviral, antitumor, antimicrobial fungicide, algaecide and as antibiotics [17-26]. Moreover, the presences of different interacted functional groups determine their great synthetic potential. In continuation of this work, herein is reported that the synthesis and in vitro study of antibacterial activity of heterocyclic N-Mannich bases of 5-(5-amino-1,3,4thiadiazol-2yl)-3,4-dihydro-6-methyl-4phenylpyrimidin-2(1*H*)-one (3a-e) against the species of Candida tropicalis, Aspergillusterreus,

species of *Candida tropicalis,Aspergillusterreus, Penicilliumsps* Amphotericin-Bis used as standard drug. For this purpose, heterocyclic precursors DHPMs (1a-e) are synthesized by microwave irradiation of aromatic aldehydes, ethylacetoacetate and thiourea according to the literature procedure [27,28]. Subsequently, these DHPMs are used to synthesis compounds (2a-e). All the synthesized compounds are characterized by using elemental analysis, mass spectra, ¹H&¹³CNMR spectral studies.

2. EXPERIMENTAL

Melting points are determined using open capillary method and are uncorrected. The

compounds are checked for homogeneity by TLC on silica gel-G. The IR spectra are recorded on FT-IR Thermo Nicolet Avatar 370 spectrophotometer using KBr disc method. The 1 H and 13 C-NMR are recorded on Bruker Avance-III 400MHz FTNMR spectrometer using DMSO- d_6 . Elemental analyses are recorded on Elemental Vario EL III instrument. The mass spectrums are recorded on Joel GC-mate spectrometer. All compounds given satisfactory micro analytical results. Pyrimidine (1) is prepared by reported method $^{[27]}$.

Scheme - 1: Synthesis of 5-(hydrazine carbothioamide)-3,4-dihydro-6-methyl-4-phenylpyrimidin -2(1*H*)-one (2a-e).

$$H_2N$$
 H_2N
 H_3C
 H_3C

Scheme - 2: Synthesis of 5-(5-amino-1,3,4-thiadiazole-2-yl)-3,4-dihydro-6-methyl-4-Phenyl pyrimidin-2(1*H*)-one (3a-e).

3. RESULTS AND DISCUSSION

Compounds (3a-e) are synthesized as per the scheme 1 and 2. The compound $\bf 3a$ is prepared by reacting hydrazine carbothioamide compound $\bf 2a$ with conc.H₂SO₄ and NH₃. Hydrazine carbothioamide compound $\bf 2a$ is synthesized by reacting pyrimidine ethyl ester $\bf 1$ with thiosemicarbazide is irradiated in a domestic microwave oven (200W) for 2 minutes [29]. The reaction mixture is allowed to cool and the obtained solid is recrystallized from ethanol.

The pyrimidine ethyl ester compound **1a** prepared by a mixture of aromatic aldehyde (0.01m), ethylacetoacetate (0.01m) and urea

(0.01m) is mixed thoroughly with 0.15 mole of tin (II) chloride as catalyst in a conical flask. The content of the flask is irradiated in a domestic microwave oven (400W) for 6 minutes. The completion of the reaction is monitored by TLC. The structures of the synthesized compounds are confirmed by IR, ¹H and ¹³C-NMR, GC-MS and CHN analysis. Formation of compound **2a** is confirmed by the presence of N-H stretching peaks at 3365, 3241 cm⁻¹ and 3116 cm⁻¹ and C=0 stretching peaks at 1724 cm⁻¹ in IR and singlet at ³⁶6.50 for NH₂ group in ¹HNMR spectra.

Treatment of compound 2a with conc.H₂SO₄ and NH₃, furnished 5-(5-amino-1,3,4-thiadiazol-2-yl)-3,4-dihydro-6-methyl-4-phenylpyrimidin-2(1H)-one(3a-e). The structure of 3a is elucidated on the basis of C-S linkage in the thiadiazole ring, which causes sharp absorption band at 1225 cm⁻¹ in its IR spectrum. ¹HNMR spectrum shows a singlet at δ 4.00 due to NH₂ functional group of 3a.

The IR spectral data reveal the carbonyl absorption band at 1689 cm $^{\!-1}$ of NH-CO-NH group, N-N stretching band at1098 cm $^{\!-1}$ aliphatic C-H and aromatic C-H stretching at 2976 cm $^{\!-1}$ and 3027 cm $^{\!-1}$ group of pyrimidine moiety 3a. Mass spectrum also supported the proposed structure by viewing molecular ion peak at m/z 287 M $^{\!+}$

3.1. General Procedure

3.1.1. Synthesis of 5-(hydrazine carbothioamide)-3,4-dihydro-6-methyl-4-phenylpyrimidin-2(1*H*)-one2a

An equimolar mixture of compound1 (0.01m) and thiosemicarbazide (0.01m) with catalytic amount of acetone is irradiated in a domestic microwave oven (200W) for 2 minutes. The reaction mixture is allowed to cool and the obtained solid is recrystallized from ethanol. The compounds prepared in this manner (2a-e) are listed in Table1. Melting point of the compound is 140°C yield 85%. ¹HNMR (400 MHz, DMSO- d_6) δ 2.251 (s, 3H), 5.152 (d, J = 3.2Hz,1H), 6.501 (s, 2H), 7.213-7.336 (m, 5H), 7.702 (d, J= 2.8Hz, 1H), 8.175 (d, *J*= 6.4Hz, 2H,), 9.149 (s, 1H); ¹³CNMR $(400 \text{MHz}, DMSO-d_6) \delta 17.72, 59.17, 99.33,126.21,$ 127.23, 128.34, 148.25, 151.71, 152.16, 165.33, 178.40; FT-IR (KBr) 3365, 3241, 3116 (NH), 3079 (Ar-H), 2978 (CH), 1724 (C=0), 1385 (C-N), 1219 (C=S), 1089 (N-N) cm⁻¹; GCMS: m/z 305 [M⁺]. Elemental Anal.(%) (C₁₃H₁₅O₂N₅S), Calculated; C 51.17, H 4.94, N 22.50, S 10.47. Found; C 51.10, H 4.85, N 22.24, S 10.94.

3.1.2. General procedure for Synthesis of 5-(5-amino-1,3,4-thiadiazole-2-yl)-3,4-dihydro-6-methyl-4-phenylpyrimidin-2(1*H*)-one 3a

The compound 2 (0.01mol) is dissolved with cooling in 4mL conc.H₂SO₄ and kept at room temperature for overnight, stirred it occasionally and then poured onto crushed ice then resulting suspension is kept in ammonical solution for 2hrs, filtered and recrystallized from ethanol as white crystals. The compounds prepared (3a-e) are listed in Table 2.Melting point 175°c. Yield 92%. ¹HNMR(400MHz, DMSO- d_6) δ 2.258 (s. 3H, CH₃). 4.004 (s, 2H, NH₂), 5.159 (J= 3.2Hz, d, 1H, CH),7.227-7.347 (m,5H, Ar-H), 7.701 (J=2Hz, d, 1H, NH), 9.151 (s, 1H, NH).13CNMR(400MHz, DMSO- d_6) δ 17.03, 59.15, 99.30, 126.20, 127.20, 128.34, 144.82, 148.27, 152.10, 165.32. FT-IR(KBr) 3354, 3227, 3110 (NH), 3027 (Ar-H), 2976 (CH), 1689 (C=0), 1460(C=N), 1225 (C-S), 1378 (C-N), 1098 (N-N)cm⁻¹. GCMS: m/z[287 M⁺].

3.1.3. Synthesis of 5-(5-amino-1,3,4-thiadiazole-2-yl)-4-(4-chlorophenyl)-3,4-dihydro-6-methylpyrimidin-2(1*H*)-one 3b.

 $^{1}\text{HNMR}(400\text{MHz}, \text{DMSO-}d_{6})~\delta2.257(\text{ s, 3H, CH}_{3}),~4.003~(\text{s, 2H, NH}_{2}),~5.154~(\emph{J}=~3.2\text{Hz, d, 1H,CH}),7.247-7.274~(dd,2\text{H, Ar-H}),~7.379-~7.413$

(dd, 2H, Ar-H) 7.738 (J= 3.2Hz, d, 1H, NH), 9.209 (s, 1H, NH). 13 CNMR (400MHz, DMSO- d_6) δ 17.75, 59.21, 98.88, 126.15, 128.33,131.78, 143.75,148.63, 151.93, 165.18. FT-IR(KBr) 3542, 3242, 3114 (NH), 3037 (Ar-H), 2977 (CH), 1713(C=0), 1529 (C=N), 1290 (C-N), 1223 (C-S), 1089 (N-N)cm⁻¹. GCMS:m/z[322 M+].

3.1.4. Synthesis of 5-(5-amino-1,3,4-thiadiazole-2-yl)-4-(4-(dimethylamino)phenyl)-3,4-dihydro-6-methylpyrimidin-2(1*H*)-one 3c.

¹HNMR (400MHz, DMSO- d_6) δ 2.238 (s, 3H, CH₃), 2.856 (s, 6H, N(CH₃)₂), 3.996 (s, 2H,NH₂), 5.048(J=3.2Hz, d, 1H, CH), 6.660(J=8.8Hz,d,2H, Ar-H), 7.048 (J=8.4Hz,d, 2H, Ar-H), 7.556(2.4Hz, d, 1H, NH), 9.053 (s, 1H, NH). ¹³CNMR(400MHz, DMSO- d_6) δ17.68, 53.30,59.04, 99.94,112.19, 126.85, 132.62, 147.46, 149.74, 152.27, 165.46. FT-IR(KBr) 3357,3242, 3110 (NH), 3018 (Ar-H), 2977 (CH), 1721 (C=0), 1526 (C=N), 1221(C-S), 1093 (N-N)cm⁻¹.GCMS: m/z [331 M⁺].

m 11 4	D1 1 1			1 (0	
Table - 1:	Physical and	l analytical	data of	compounds (2a-e	1

Compd	Mol. Formula	R	D	X	Mol.	Yield	m.j)	Calcd. /	Found ((%)
	Moi. Formula	K	R ₁	Λ	Wt	(%)	(°C) <u> </u>	N	Н	S
2a	$C_{13}H_{15}N_5O_2S$	Н	Н	0	305	85	140	51.17	22.50	4.94	10.47
2u	0131113113020	11	11	Ü	303	0.5	110	(51.94	22.24	4.85	10.94)
2b	$C_{13}H_{14}N_5O_2SCl$	Cl	Н	0	339	70	145	46.05	20.65	4.15	9.42
20	G1311141 1 5025G1	GI	- 11	U	337	70	(4)	(46.30	20.94	4.60	9.49)
2c	$C_{15}H_{20}N_6O_2S$	$N(CH_3)_2$	Н	0	348	78	170	52.35	24.42	5.84	9.28
20	G1511201 1 6O25	11(0113)2	11	U	340	70	170 (5	(52.79	24.77	5.83	9.85)
2d	$C_{13}H_{14}N_6O_4S$	Н	NO_2	0	350	81	132	44.60	24.00	4.02	9.13
Zu	C1311141N6O4S	11	NO ₂	U	330	01	132	(44.06	24.07	4.43	9.22)
2e	$C_{13}H_{15}N_5O_3S$	ОН	Н	0	321	83	160	48.62	21.18	4.70	9.95
	C13H15N5U3S	OΠ	П	U	321	03	100	(48.75	21.19	4.32	9.36)

Table - 2: Physical and analytical data of compounds (3a-e)

Compd	Mol.	R	R ₁	X	Mol.	Yield	m.p	Calcld./Found (%)			
Compu	Formula	K	N ₁	Λ	Wt	(%)	(°C)	С	N	Н	S
3a	$C_{13}H_{13}N_5OS$	Н	Н	0	287	92	175	54.38	24.39	4.56	11.13
								(54.35	24.64	4.56	11.68)
3b	$C_{13}H_{12}N_5OSCl \\$	Cl	Н	0	321	85	170	48.63	21.80	3.76	9.95
								(48.28	21.79	3.50	6.68)
3c	$C_{15}H_{18}N_6OS$	$N(CH_3)_2$	Н	0	330	86	210	54.57	25.45	5.49	9.96
								(54.34	25.67	5.60	9.62)
3d	$C_{13}H_{12}N_6O_3S$	Н	NO_2	0	332	82	162	47.02	25.30	3.64	9.62
								(47.51	25.85	3.88	9.21)
3e	$C_{13}H_{13}N_5O_2S\\$	ОН	Н	0	303	83	220	51.51	23.10	4.32	10.54
								(51.11	23.02	4.89	10.07)

Table - 3: Antifungal activities of compounds (3a-e)								
Compound	Candida tropicalis	Aspergillusterreus						
Control	0	0	0					
3a	6	-	21					
3b	24	9	25					
3c	12	5	13					
3d	8	6	15					
3e	9	8	10					

3.1.5. Synthesis of 5-(5-amino-1,3,4-thiadiazole-2-yl)-4-(3-nitrophenyl)-3,4-dihydro-6-methyl pyrimidin-2(1*H*)-one 3d

¹HNMR(400MHz, DMSO- d_6) δ2.066(s, 3H, CH₃), 3.805 (s, 2H, NH₂), 5.098(J=3.2Hz,d, 1H,CH),7.036-7.802 (m, 4H, Ar-H), 8.482 (J=3.2Hz,d, 1H, NH), 9.126 (s, 1H, NH).¹³CNMR(400MHz, DMSO- d_6) δ 17.81, 59.35, 98.35, 122.29, 123.87, 132.94, 133.40, 146.96, 147.73,148.38,149.36, 165.03, 178.39. FT-IR(KBr) 3429, 3396, 3245 (NH), 3153 (Ar-H), 2980 (CH), 1705 (C=O), 1526 (C=N), 1348 (C-N), 1294 (C-S), 1094 (N-N)cm⁻¹. GCMS: m/z[332 M⁺].

3.1.6. Synthesis of 5-(5-amino-1,3,4-thiadiazole-2-yl)-4-(4-hydroxyphenyl)-3,4-dihydro-6-methylpyrimidin-2(1*H*)-one 3e

¹HNMR (400MHz, DMSO- d_6) δ 2.237(s, 3H, CH₃), 3.991 (s, 2H, NH₂),5.051(J=3.2Hz, d, 1H,CH),6.887-7.115 (m, 4H, Ar-H), 7.563 (J=1.6Hz, d, 1H, NH), 9.074 (s, 1H, NH), 10.296(br,1H, OH). ¹³CNMR(400MHz, DMSO- d_6) δ17.69, 59.08, 99.79, 114.97, 127.36, 129.67, 135.22,147.65, 155.32, 156.51, 165.40.

FT-IR(KBr) 3607 (OH), 3429, 3396, 3245 (NH), 3030(Ar-H), 2980 (CH), 1705 (C=0), 1526 (C=N), 1348 (C-N), 1294 (C-S), 1094 (N-N)cm⁻¹. GCMS: *m/z*[303 M⁺].

3.2. Antifungal studies

Among the newly synthesized pyrimidine derivatives are screened for their antifungal activity in vitroagainst the species of Candida tropicalis, Aspergillus terreus and Penicillium spsusing agar well disk diffusion method. The test compounds are dissolved in DMSO to get a solution of $50\mu g/mL$ concentration. The inhibition zones are measured in millimeters at the end of an incubation period of 18hrs at $37^{0}C$. Amphotericin-Bis used as a standard and the results are shown in table 3. Most of the tested compounds show moderate to good inhibition.

4. CONCLUSION

The investigation of antifungal screening data reveals that, all the tested compounds show moderate to good inhibition at $50\mu g/mL$ concentration. Especially, the compound 3b shows

very good activity than the others. However the activity of compound 3a, 3b, 3c and 3d against *Aspergillus terreus* inhibition is more compared to the standard drug.

Acknowledgement

The authors are thankful to Principal and Research Department of chemistry, Islamiah College, Vaniyambadi, Vellore district, Tamilnadu for constant encouragement and providing necessary facilities.

5. REFERENCES

- 1. Kape C and Oliver. **Tetrahedron,** 1993; 49: 6937-6963.
- 2. Ugi, Dom Ling A and Horl W. **Endeavour**, 1998; 18: 115-122.
- 3. Kape CO. **Eur J Med Chem,** 2000; 35: 1043-1045.
- 4. Mannich C and Lammering D. **ChemBer**, 1922; 55: 3510-3513.
- 5. Manjula A, Rao BV and Neelakantam P. **Synth Commun**, 2004; 34: 2665-2667.
- 6. Andrew J, Hong Wang, Samuel A and Sakwa. **Tetrahedron Letters**, 2010; 51: 5103-5105.
- 7. Garima, Vishnu P, LalDhar S and Yadav. **Tetrahedron Letters**, 2010; 51: 6436-6438.
- 8. Sergey V, Ryabukhin, Andrey S, Plaskon, Ostapchuk, Oleksandr O, Grygorenko, Oleg V, Shishkin, Andrey A and Tolmachev. **Tetrahedron letters,** 2010; 51: 4229-5232.
- 9. Tramontini M and Angiolini L. Mannich Bases; Chemistry and uses (CRC Press, Boca Raton), 1994.
- 10. Zang H, Vrang L, Bacbro K, Lind P, Sahlberg C, Unge and Oberg B. **Antiviral Res.**, 1995; 28: 331.
- 11. Hai-Ming Guo, Yan-Yan WU, Hong-Ying Nill, Dong-Chao Wang and Gui-RongQu. **J Org Chem.**, 2010; 75: 3863-3866.
- 12. Hellmann H and Loschman I. **Chem Ber,** 1954; 87: 1684-1686.

13. Moore MB and Rapela RT. **Y Am Chem Soc.**, 1946; 68: 1657-1660.

- 14. Atkinson RO. J Chem Soc., 1954; 1329-1332.
- 15. Varma RS. **J Indian Chem Soc.**, 2004; 81: 627-629.
- 16. Narwade SK, Dalvi NR, Gill CH and Karale BK. **Indian J Chem.,** 2006; 45B: 2776-2780.
- 17. Kidwai M, Venkataramanan R and Dave B. J HeterocyclChem., 2002; 39: 1045-1047.
- 18. Ross NA and Burtsch RA. **J HeterocyclChem.**, 2001; 38: 1255-1259.
- 19. Singh V, Sapehiyia V and Kad GL. **Synthesis**, 2003; 2: 198-201.
- 20. Swati ojha, Neelam Dhakar and Talesara, **Indian J Chem.,** 2007; 46B: 860-865.
- 21. Xiajuan Z and Guiyu J. **J Heterocycl Chem.,** 2001; 38: 993-995.
- 22. Jagadhani SG, More MS and Karale BK. *Indian* J HeterChem, 2006; 15: 335-338.
- 23. Ravindra KC and Vagdevi MH. **Indian J HeterChem.**, 2006; 15: 283-287.
- 24. Bhavsar AM, Shah MD and Desai NC. **Indian J Chem.**, 2008; 47B: 579-589.
- 25. Andrews B and Mansur Ahmed. **Asian J Chem.,** 2013; 25: 2070-2072.
- 26. Andrews B and Mansur Ahmed. J Chem and Pharma Research, 2012; 4(8): 3920-3923.
- 27. Dipak K, Roy and Manobjyoti Bordoloi. **Indian J. Chem.,** 2006; 45B: 1067-1072.
- 28. Niharika I, Sandip S, Kshirsagar M. HemLata and Chaudhari S. Int. J. Pharm and Pharma. Sci., 2011; 3(1): 109-111.
- 29. Moayed S and Al-Gwady. **J. Raf. Sci.,** 2009; 20(1): 1-7.