International Journal of Chemical and Pharmaceutical Sciences 2015, June., Vol. 6 (2) ISSN: 0976-9390

# Characterization of famciclovir by physico-chemical methods

<sup>1</sup> Ramana Kumar Kakarla\* and <sup>2</sup> Srilalitha Vinnakota.

<sup>1</sup> Department of Chemistry, CMR Institute of Technology, Kandlakoya, Hyderabad, Telangana, India.

<sup>2</sup> Department of Chemistry, Faculty of Science and Technology, ICFAI Foundation for Higher Education, Dontanpally, Hyderabad, Telangana, India.

\*Corresponding Author: E-Mail: kakarla1110@gmail.com

Received: 23 July 2015, Revised and Accepted: 30 July 2015

### **ABSTRACT**

The compound Famciclovir is synthesized and characterized by elemental analysis,  $^1\mathrm{H}$  NMR,  $^{13}\mathrm{C}$  NMR, mass spectra, electronic spectra and IR spectra. This confirms the proposed structure for the compound Famciclovir

**Keywords:** Synthesis, Famciclovir, Characterization, <sup>1</sup>H NMR, <sup>13</sup>C NMR, Mass spectra, Electronic spectra and IR spectra.

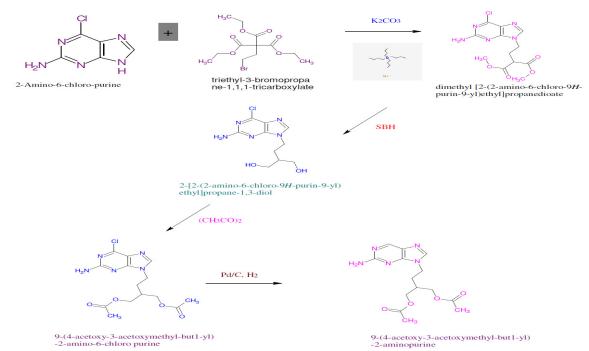
### 1. INTRODUCTION

Famciclovir, an anti-viral agent (acyclic guanine derivative), chemically it is 2-[2-(2amino-9H-purin-9-yl) ethyl]-1, 3-propanediol diacetate. Famciclovir is a guanine analogue used for the treatment of various herpes viral infections, most commonly for herpes zoster (shingles). It is a prodrug form of penciclovir undergoes rapid biotransformation to the active antiviral compound penciclovir, which has inhibitory activity against herpes simplex virus types 1 (HSV-1) and 2 (HSV-2) and varicella zoster virus (VZV). Torii et al., [1] have established practical methods for the synthesis of Famciclovir (FCV) from readily available N2-acetyl-7benzylguanine. Chiodini et al., [2] have reported the manufacture of Famciclovir using phase-transfer catalysts. Kobe et al., [3] have reported a new process for the preparation of alkyl substituted purine derivatives. Wang et al., [4] have established a new method for the preparation of Famciclovir with 21% yield via regio selective alkylation of 2with 5-(2-bromoethyl)-2,2amino purine dimethyl-1,3-dioxan as a pivotal step. Based on the above literature the authors proposed to synthesize the compound with good quality and economy. Famciclovir is indicated for the treatment of herpes zoster (shingles) [5], treatment of herpes simplex virus 2 (genital herpes) [6], herpes labialis (cold sores) in immunocompetent patients [7] and for the suppression of recurring episodes of herpes simplex virus 2. It is also indicated for treatment of recurrent episodes of herpes simplex in HIV patients.

### 2. MATERIAL AND METHODS

All the Chemicals and reagents used were of Analytical Grade and were purchased from Merck.

The <sup>1</sup>H Nuclear Magnetic Resonance Spectrum of the compounds I & II are recorded in DMSO-d<sub>6</sub> at 27°C on Bruker Avance NMR Spectrometer (300MHz) and the compounds III & IV are recorded in CDCl<sub>3</sub> at 27°C on Bruker Avance NMR Spectrometer (300MHz). The <sup>13</sup>C Nuclear Magnetic Resonance Spectrum are recorded for compound I in DMSO-d<sub>6</sub>, for compound II in DMSO-d<sub>6</sub> + D<sub>2</sub>O and for compounds III & IV in CDCl<sub>3</sub> at 27°C on Bruker Avance NMR Spectrometer (300MHz). The mass spectra of all the compounds are recorded on Waters Quattro Micro Mass Spectrophotometer. The infrared spectra of all the compounds are recorded in a KBr pellet on Perkin Elmer infrared Spectrophotometer. The Ultra-Violet spectra of all the compounds in methanol are scanned from 200 to 400 nm on Perkin Elmer Lambda 35 UV/Vis Spectrophotometer


The preparation of Famciclovir utilizes 2-Amino-6-Chloropurine as a starting material (available commercially). Synthesis involves Esterification, peptide coupling between 2-Amino-6-Chloropurine and Triethyl 3-bromopropane 1, 1, 1-tricarboxylate using Potassium Carbonate as a catalyst gives Dimethyl 2-(2-amino-6-chloro 9H-purin-9-yl)malanoate (FCV-I).This (FCV-I) on further reduction with Sodium borohydride gives 2-[2-(2-amino-6-Chloro-9H-purin-9-yl) ethyl]

propane-1, 3-diol(FCV-II). By acetylation of FCV-II using Acetic anhydride and Triethyl amine as a solvent, 9-(4-acetoxy-3-acetoxy methyl-but-1-yl)-2-amino-6-chloropurine (FCV-III) is formed. FCV-III on reductive acylation using 5% palladium on carbon and sodium acetate in triethyl amine under hydrogen atmosphere at room temperature gave

Famciclovir (FCV-IV). Physical state of the compound is white amorphous. Melting point is  $102-104^{\circ}$ C. Percentage of yield is 90.

The detailed procedure for the synthesis of all the four compounds is shown in the following table 1.

| Table - 1: A detailed procedure for the synthesis |                                                                                     |                                                     |                                                                                                                                                                                                                                                      |
|---------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Compound                                          | Reactants                                                                           | Catalyst/<br>Medium                                 | Conditions                                                                                                                                                                                                                                           |
| FCV-I                                             | 2-amino-6-chloro<br>purine and Triethyl 3-<br>bromopropane-1,1,1-<br>tricarboxylate | Potassium carbonate and tetrabutyl ammonium bromide | The reaction mixture is heated to $60^{\circ}\text{C}$ for 16 hours , the residue obtained to cooled to $20^{\circ}\text{C}$ , stirred for one hour and dried in hot air oven at $60^{\circ}\text{C}$ .                                              |
| FCV-II                                            | FCV-I and methylene dichromate                                                      | Sodium<br>borohydride                               | The reaction mixture is cooled to $20^{\circ}\text{C}$ , added methanol, pH is adjusted to 6.5, distilled at $60^{\circ}\text{C}$ and the resultant solid obtained is dried at $50^{\circ}\text{C}$                                                  |
| FCV-III                                           | FCV-II, methylene dichromate and triethyl amine                                     | Acetic anhydride                                    | Heated slowly for one hour, cooled to room temperature, pH is adjusted to 7, organic layer is separated, dried with $Na_2SO_4$ , distillation followed by the addition of di-isopropylate (DIP) and finally dried in hot air oven at $60^{\circ}C$   |
| FCV-IV                                            | FCV-III and isopropyl alcohol                                                       | Carbon, palladium (5%) and sodium acetate           | Stirred well, heated to $60^{\circ}$ C till a clear solution is obtained, filtered, pH is adjusted to 7, organic layer is separated , dried with Na <sub>2</sub> SO <sub>4</sub> to remove water and finally dried in hot air oven at $65^{\circ}$ C |



Scheme – 1: Steps involved in the synthesis of Famciclovir

## 3. RESULTS

## 3.1. Physical properties

The physical properties of the final compound as well as intermediates are shown in table 2.

Table - 2: Physical properties of the Compounds synthesized

| Compound | Molecular<br>Formula                                            | Molecular<br>Weight | Physical<br>State | Color          |
|----------|-----------------------------------------------------------------|---------------------|-------------------|----------------|
| FCV-I    | C <sub>12</sub> H <sub>14</sub> ClN <sub>5</sub> O <sub>4</sub> | 327.72              | Amorphous         | White          |
| FCV-II   | $C_{10}H_{14}ClN_5O_2$                                          | 271.70              | Amorphous         | White          |
| FCV-III  | C <sub>14</sub> H <sub>18</sub> ClN <sub>5</sub> O <sub>4</sub> | 355.78              | Amorphous         | Pale<br>Yellow |
| FCV-IV   | $C_{14}H_{19}N_5O_4$                                            | 321.33              | Amorphous         | White          |

# 3.2. Elemental analysis

The compounds were analysed for carbon, hydrogen and nitrogen and the results are shown in table 3.

Table - 3: Analytical data for the compounds

| rubic birmary trear data for the compounds |                  |                      |                |                  |
|--------------------------------------------|------------------|----------------------|----------------|------------------|
| Compound                                   | Molecular Weight | Found (Calculated) % |                |                  |
|                                            |                  | С                    | Н              | N                |
| FCV-I                                      | 327.72           | 43.89<br>(43.98)     | 4.22<br>(4.31) | 21.28<br>(21.37) |
| FCV-II                                     | 271.70           | 44.10<br>(44.21)     | 5.10<br>(5.19) | 25.69<br>(25.78) |
| FCV-III                                    | 355.78           | 47.19<br>(47.26)     | 4.99<br>(5.10) | 19.59<br>(19.68) |
| FCV-IV                                     | 321.33           | 52.24<br>(52.33)     | 5.89<br>(5.96) | 21.71<br>(21.79) |

# 3.3. <sup>1</sup>H NMR Spectral data:

The  $^1\text{H}$  NMR Spectra of all the compounds is taken and the data obtained is tabulated in table 4 and the spectra are shown in figure 2 and 3.

| Table - 4: <sup>1</sup> H NMR Spectral data for the compounds |                  |              |                      |
|---------------------------------------------------------------|------------------|--------------|----------------------|
| Compound                                                      | Proton<br>Number | Multiplicity | Chemical shift (ppm) |
|                                                               | H-8 (1H)         | S            | 8.08                 |
|                                                               | H-10 (2H)        | s            | 6.09                 |
| FCV-I                                                         | H-2" (2H)        | t            | 4.09-4.13            |
| FCV-I                                                         | H-4',5' (6H)     | s            | 3.60                 |
|                                                               | H-2' (1H)        | t            | 3.51-3.55            |
|                                                               | H-1" (2H)        | m            | 2.26-2.36            |
|                                                               | H-8 (1H)         | S            | 8.16                 |
|                                                               | H-10 (2H)        | s            | 6.90                 |
|                                                               | H-4',5' (2H)     | m            | 4.51                 |
| FCV-II                                                        | H-2" (2H)        | t            | 4.08-4.13            |
|                                                               | H-1',3' (4H)     | m            | 3.36-3.45            |
|                                                               | H-1" (2H)        | q            | 1.71-1.78            |
|                                                               | H-2' (1H)        | m            | 1.39-1.47            |
|                                                               | H-8 (1H)         | S            | 7.79                 |
| FCV-III                                                       | H-10 (2H)        | S            | 5.11                 |
| rcv-III                                                       | H-1' (2H)        | t            | 4.17-4.22            |
|                                                               | H-4',5' (4H)     | d            | 4.13-4.15            |

|        | H-7',9' (6H) | S | 2.07      |
|--------|--------------|---|-----------|
|        | H-2',3' (3H) | m | 1.92-1.99 |
|        | H-6 (1H)     | S | 8.70      |
|        | H-8 (1H)     | S | 7.77      |
|        | H-10 (2H)    | S | 5.05      |
| FCV-IV | H-1' (2H)    | t | 4.18-4.23 |
|        | H-4',5' (4H) | d | 4.13-4.15 |
|        | H-7',9' (6H) | S | 2.06      |
|        | H-2',3' (3H) | m | 1.91-2.03 |

# 3.4. <sup>13</sup>C NMR Spectral Data:

The  $^1\mathrm{H}$  NMR Spectra of all the compounds is taken and the data obtained is tabulated in table 5.

| Table - 5: <sup>13</sup> C NMR Spectral Data for the compounds |               |                      |  |  |
|----------------------------------------------------------------|---------------|----------------------|--|--|
| Compound                                                       | Carbon Number | Chemical Shift (ppm) |  |  |
|                                                                | C-1',3'       | 168.77               |  |  |
|                                                                | C-2           | 159.74               |  |  |
|                                                                | C-4           | 154.13               |  |  |
|                                                                | C-6           | 149.34               |  |  |
| FCV-I                                                          | C-8           | 143.09               |  |  |
| rcv-i                                                          | C-5           | 123.39               |  |  |
|                                                                | C-4',5'       | 52.50                |  |  |
|                                                                | C-2"          | 48.46                |  |  |
|                                                                | C-2'          | 40.97                |  |  |
|                                                                | C-1"          | 27.92                |  |  |
|                                                                | C-2           | 160.01               |  |  |
|                                                                | C-4           | 154.38               |  |  |
|                                                                | C-6           | 149.88               |  |  |
|                                                                | C-8           | 143.94               |  |  |
| FCV-II                                                         | C-5           | 123.78               |  |  |
|                                                                | C-1',3'       | 61.62                |  |  |
|                                                                | C-2"          | 42.00                |  |  |
|                                                                | C-2'          | 40.92                |  |  |
|                                                                | C-1"          | 28.66                |  |  |
|                                                                | C-6'8'        | 170.73               |  |  |
|                                                                | C-2           | 159.11               |  |  |
|                                                                | C-4           | 153.73               |  |  |
|                                                                | C-6           | 151.12               |  |  |
|                                                                | C-8           | 141.97               |  |  |
| FCV-III                                                        | C-5           | 124.99               |  |  |
|                                                                | C-4'5'        | 63.48                |  |  |
|                                                                | C-1'          | 41.22                |  |  |
|                                                                | C-3'          | 34.80                |  |  |
|                                                                | C-2'          | 28.67                |  |  |
|                                                                | C-7',9'       | 20.68                |  |  |
|                                                                | C-6'8'        | 170.57               |  |  |
|                                                                | C-2           | 159089               |  |  |
|                                                                | C-4           | 152.97               |  |  |
|                                                                | C-6           | 149.53               |  |  |
| FCV-IV                                                         | C-8           | 141.88               |  |  |
|                                                                | C-5           | 127.83               |  |  |
|                                                                | C-4'5'        | 63.39                |  |  |
|                                                                | C-1'          | 40.50                |  |  |
|                                                                | C-3'          | 34.67                |  |  |

## 3.5. Mass spectrum

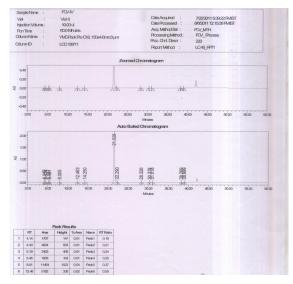
The mass Spectra of all the compounds is taken and the data obtained is tabulated in table 5 and the spectrum is shown in figure 4

Table - 5: Mass spectral data for the compounds Compound m/z**Fragment** 349.89 (M+Na) C<sub>12</sub>H<sub>14</sub>ClN<sub>5</sub>O<sub>4</sub>Na FCV-I  $C_{12}H_{14}ClN_5O_4$ 327.92 (m/z) C7H11O4 158.83 295.91 (M+2+Na)  $C_{10}H_{14}ClN_5O_2Na$ FCV-II 293.88 (M+Na)  $C_{10}H_{14}ClN_5O_2Na$ 271.95 (m/z)  $C_{10}H_{14}ClN_5O_2$ 379.84 (M+2+Na)  $C_{14}H_{18}ClN_5O_4Na$ FCV-III 377.86 (M+Na) C14H18ClN5O4Na 355.88 (m/z)  $C_{14}H_{18}ClN_5O_4$ 343.95 (M+Na) C14H19N5O4Na FCV-IV 321.96 (M+1)  $C_{14}H_{19}N_5O_4$ 

# 3.6. Electronic spectral data

The electronic spectral data of all the compounds is taken and tabulated in table 6.

Table - 6: Electronic spectral data for the compounds


| Compound | Wave length (nm) | Band                                       |
|----------|------------------|--------------------------------------------|
|          | 223.20           | K band of aromatic ring                    |
| FCV-I    | 247.99           | B band of aromatic ring                    |
|          | 310.24           | $\boldsymbol{\beta}$ band of aromatic ring |
| FCV-II   | 223.72           | K band of aromatic ring                    |
|          | 310.27           | $\boldsymbol{\beta}$ band of aromatic ring |
| FCV-III  | 223.46           | K band of aromatic ring                    |
|          | 248.24           | B band of aromatic ring                    |
|          | 310.50           | $\boldsymbol{\beta}$ band of aromatic ring |
| FCV-IV   | 223.00           | K band of aromatic ring                    |
|          | 310.37           | $\boldsymbol{\beta}$ band of aromatic ring |

# 3.7. Infrared Spectral data:

The IR Spectral data of all the compounds is taken and tabulated in table 7 and the spectrum is shown in figure 6

Table - 7: IR Spectral data for the compounds Compound Frequency Assignment (cm<sup>-1</sup>) 3465 & 3313 NH stretching 3109 & 3013 C-H stretching in aromatic ring 2960, 2947 & C-H stretching in CH2, CH3 2853 1741 & 1717 C=0 stretching 1633 & 1611 C=N stretching FCV-I 1562 & 1523 C=C stretching 1473, 1444 & NH bending 1411 1358 & 1337 CH bending in CH<sub>2</sub>, CH<sub>3</sub> C-N stretching 1312 & 1301 C-O stretching 1283 & 1260 1228 & 1213 C-Cl stretching

|         | 1195, 1168 &<br>1153 | C-C stretching                                          |  |
|---------|----------------------|---------------------------------------------------------|--|
|         | 1047, 998 &<br>962   | In plane bending vibrations of C-H in aromatic ring     |  |
|         | 913, 886 &<br>783    | Out of plane bending vibrations of C-H in aromatic ring |  |
|         | 3327 & 3206          | NH, OH stretching                                       |  |
|         | 3090                 | C-H stretching in aromatic ring                         |  |
|         | 2934 & 2881          | C-H stretching in CH <sub>2</sub> , CH <sub>3</sub>     |  |
|         | 1639 & 1611          | C=N stretching                                          |  |
|         | 1569 &1526           | C=C stretching                                          |  |
|         | 1473 & 1411          | NH, OH bending                                          |  |
| FCV-II  | 1379 & 1358          | CH bending in CH <sub>2</sub> , CH <sub>3</sub>         |  |
| 101 11  | 1315                 | C-N stretching                                          |  |
|         | 1283 & 1315          | C-Cl stretching                                         |  |
|         | 1166 & 1105          | C-C stretching                                          |  |
|         | 1076, 1040 &<br>1020 | In plane bending vibrations of C-H in aromatic ring     |  |
|         | 985, 918 &<br>783    | Out of plane bending vibrations of C-H in aromatic ring |  |
|         | 3484 & 3303          | NH stretching                                           |  |
|         | 3195 & 3117          | C-H stretching in aromatic ring                         |  |
|         | 2064, 2944 &<br>2926 | C-H stretching in CH <sub>2</sub> , CH <sub>3</sub>     |  |
|         | 1748 & 1731          | C=0 stretching                                          |  |
|         | 1652 & 1623          | C=N stretching                                          |  |
|         | 1558 & 1520          | C=C stretching                                          |  |
|         | 1472 &1446           | NH bending                                              |  |
| FCV-III | 1410 & 1382          | CH bending in CH <sub>2</sub> , CH <sub>3</sub>         |  |
|         | 1367 & 1358          | C-N stretching                                          |  |
|         | 1326 & 1309          | C-O stretching                                          |  |
|         | 1242                 | C-Cl stretching                                         |  |
|         | 1171 & 1148          | C-C stretching                                          |  |
|         | 1070, 1035 &<br>1023 | In plane bending vibrations of C-H in aromatic ring     |  |
|         | 988, 907 &<br>880    | Out of plane bending vibrations of C-H in aromatic ring |  |
|         | 3404 & 3310          | NH stretching                                           |  |
|         | 3080                 | C-H stretching in aromatic ring                         |  |
|         | 2963, 2871 &<br>2824 | C-H stretching in CH <sub>2</sub> , CH <sub>3</sub>     |  |
|         | 1748, 1733 &<br>1724 | C=O stretching                                          |  |
|         | 1664 & 1636          | C=N stretching                                          |  |
|         | 1615 & 1528          | C=C stretching                                          |  |
|         | 1427                 | NH bending                                              |  |
| FCV-IV  | 1400 & 1370          | CH bending in CH <sub>2</sub> , CH <sub>3</sub>         |  |
|         | 1330 & 1304          | C-N stretching                                          |  |
|         | 1259, 1247 &<br>1231 | C-O stretching                                          |  |
|         | 1172, 1132 &<br>1109 | C-C stretching                                          |  |
|         | 1088, 1060 &<br>1029 | In plane bending vibrations of C-H in aromatic ring     |  |
|         | 964, 901 &<br>792    | Out of plane bending vibrations of C-H in aromatic ring |  |
|         |                      |                                                         |  |





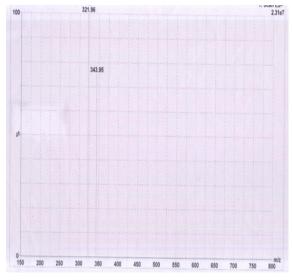



Figure - 4: Mass spectrum for FCV-4

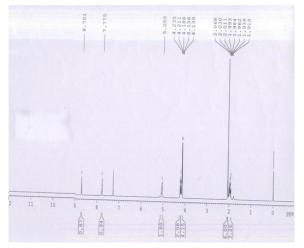



Figure - 2: <sup>1</sup>H NMR Spectrum for FCV-4

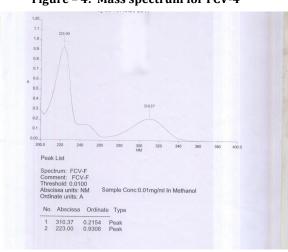



Figure - 5: Electronic Spectrum of FCV-4

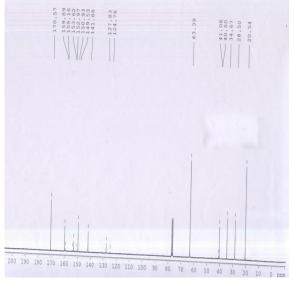



Figure – 3:  $^{13}$ C NMR Spectrum for FCV-4

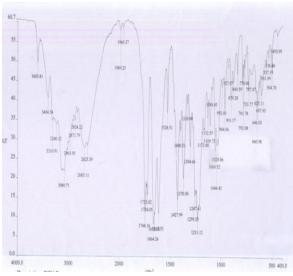



Figure - 6: IR Spectrum of FCV-4

## 4. DISCUSSION

The elemental analysis data, 1H-NMR,  $C^{13}$  NMR, Mass, Electronic, IR Spectral data confirm the synthesis of the compound Famciclovir as well as proposed structure for the compound. The purity of the compound is confirmed by HPLC

## 5. CONCLUSION

The compounds (FCV-I to FCV-IV) were synthesized and characterized by elemental analysis, <sup>1</sup>H NMR, <sup>13</sup>C NMR, mass, electronic and IR spectra. The spectra confirmed the proposed structures for all the compounds.

### 6. REFERENCES

- 1. Toril, Takayoshi, Shiragami and Hirishi. **Amino Science Laboratories,** Ajinomoto Co., Japan; 2006; 5709-5716.
- Chiodini, Giorgio, Rossi and Alessia. EP 1852435; 2007; 12.
- 3. Kobe, Suzana, Joze; Jaska and Kemijski. Institute-PCT WO 2000006573; 2000; 32
- Wang and En-Si. Lei college of life sciences, Jilin university, Changchun, 130023; China' 2000; 95-98.
- Tyring SK, Barbarash RA. Famciclovir for the Treatment of Acute Herpes Zoster: Effects on Acute Disease and Postherpetic Neuralgia. Annals of Internal Medicine, 1995; 123 (2): 89–96.
- 6. Luber AD and Flaherty JF. Famciclovir for Treatment of Herpesvirus Infections. **Annals of Pharmacotherapy.** 1996; 30 (9): 978–85.
- Spruance SL, Bodsworth N. Single-Dose, Patient-Initiated Famciclovir: A Randomized, Double-Blind, Placebo-Controlled Trial for Episodic Treatment of Herpes Labialis. J. Am. Academ. Dermatol., 2006; 55 (1): 47–53.