International Journal of Chemical and Pharmaceutical Sciences 2019, Mar., Vol. 10 (1)

Nanoemulsion based intranasal delivery of paliperidone hydrchloride for nose to brain targeting

¹ Sarjak P Pathak^{*}, ² Shailesh T Prajapati and ³ Chetna D Modi.

¹ Technology transfer department, Torrent Pharmaceutical, Indrad, Mehsana, Gujarat, India.

² Principal, Kalol institute of pharmacy, Kalol, Gandhinagar, Gujarat, India.

³ Faculty of Pharmacy, SSSRGI, Vadasama, Mehsana, Gujarat, India.

* Corresponding Author: E-Mail: Sarjak.pathak62@gmail.com

Received: 30th April 2019, Revised and Accepted: 5th May 2019

ABSTRACT

Paliperidone nano emulsion, as nasal drug delivery system was prepared to produce quick effect compare to oral route. Solubility of drug was determined in different vehicles. Pseudo ternary phase diagram generated using Acrysol E 150 as oil, Plurololeique cc 497 as a co-surfactant, and Labrasol as a surfactant. The Different formulations were prepared by the spontaneous emulsification method and were further characterized for their physicochemical properties like pH, conductivity, Globule size and zeta potential, Viscosity,Drug content, percentage transmittance & refractive index. *Ex vivo* Diffusion study of the optimized batch was studied. Optimized formulation having the mean globule size 31.1 nm and zeta potential -29.7 mV. In Histopathlogical study formulation treated mucosa did not shown any damage to the epithelium layer.

Keywords: Paliperidone, Nanoemulsion, Spontaneous emulsification, Nasal ciliotoxicity.

1. INTRODUCTION

Schizophrenia is one of the psychotic mental disorders and affects an individual's thoughts, behaviors, and social functioning. The major problem in treating mental disorders is due to the inability of the therapeutic agents to surpass the blood brain barrier (BBB) and the blood cerebrospinal fluid barrier. One of the possibilities to overcome this barrier is drug delivery to brain using novel drug delivery systems like nanoemulsions exploring nanotechnology¹⁻⁵.

Paliperidone (PALI) is an atypical antipsychotic agent that belongs to the class of benz-isoxazole and approved for the treatment of schizophrenia¹⁻⁵. It is a lipophilic drug having oral bioavailabity of 28 %. This is primarily attributed to its poor aqueous solubility, and high lipophilicity and extensive first pass metabolism. Considering the limitations, a strategy which will increase PALI solubility, reduce its first pass metabolism and overcome BBB through delivering PALI directly to the target site is highly desirable. The utility of nanoemulsions (NEs) has been successfullv established in optimizing the therapeutic performance of many lipophilic drugs. Recently, increasing attention has been focused on nanoemulsion based drug delivery due to their ease of preparation with biocompatible formulation components, unique properties such as smaller droplet size (50-200 nm), increased drug solubility, and improved mucosal permeation, which further justifies rational of this study.

An alternative route, intranasal drug delivery system has now been recognized as a reliable route for the administration of drugs next to parenteral and oral routes. The olfactory region of the nasal mucosa provides a direct connection between the nose and the brain. The advantages of nasal route are rapid absorption; higher bioavailability reduced first pass metabolism, noninvasive administration, and self-medication as well as improved patient compliance¹⁻⁵. It is also reported in our earlier studies that absorption of PALI through transnasal route was more efficient when given in an oil based formulation (microemulsion)³⁻⁴. These studies outcomes render PALI as a potent candidate for lipid based systems such as nanoemulsion for intranasal delivery. However, these formulations may suffer from drawbacks such as rapid nasal mucocilliary clearance of PALI. To get the better of this, many research groups have demonstrated the use of a potent mucoadhesive system which improves the nasal residential time and prolongs the intimate contact of drug with nasal mucosa with improved absorption.

Taken together, this information has led our research group to a formulated mucoadhesivenanoemulsion of PALI with the aim of improving its solubility and transnasal delivery.

2. MATERIALS AND METHODS

Following materials and analytical instruments used in present investigation

Materials	Source of procurement						
Paliperidone	Torrent pharmaceutical Ltd.						
Labrafil M 1944	Gattefosse Saint-Priest, France						
labrafac CC	Gattefosse Saint-Priest, France						
labrasol,	Gattefosse Saint-Priest, France						
plurololeique CC 497	Gattefosse Saint-Priest, France						
lauroglycol 90	Gattefosse Saint-Priest, France						
Polycarbophil AA-1	Lubrizol Advanced Material						
Acrysol E-150	Finar Chemical Ltd						
propylene glycol	Finar Chemical Ltd						
Methanol	Finar Chemical Ltd						
potassium dihydrogen phosphate	Finar Chemical Ltd						
tween 80	Finar Chemical Ltd						
Tween 20	Himedia Lab						
Isopropyl myristate	Himedia Lab						
Seasame oil	Qualikems						
PEG 400	Central drug house						
Propylene glycol	Central drug house						

Instruments	6	Model specification						
UV-visible		(Shimadzu		1800,				
spectrophoto	Kyoto, Japa	an)						
Fourier	transform	Spectrum	GX	FT-IR,				
Infrared		Perkin Elm	er, N	orwalk,				

Spectrophotometer	СТ
pH meter	Control Dynamics
Conductivity meter	Control Dynamics, model APX-185
Zetasizer	Nano ZS, Malvern Instruments, UK
Brookfield Viscometer LVDV-IIIU	Brookfield Engineering LABS, Stoughton, MA
Diffusion cell	Orchid Scientifics, Nashik, India
Microscope	Polarizing Microscope RPL-55 Series, Radical Instruments, India
Sonicator	Vibra cell Bandelin RK 100 H,Germany

2.1. Method for Nanoemulsion preparation:

The PALI loaded NE (P-NE) were prepared by the dissolving PALI (5 mg/mL) in oil. Surfactants were weighed accurately and mixed with oil to form homogenous isotropic mixture. Required amount of water was added to the mixture to obtain PNE. PALI loaded mucoadhesive NE (PM-NE) was prepared by the addition of polycarbophil AA-1 (0.50 %, w/w) to P-NE and the dispersion stirred for 1 h. The composition of P-NE and PM-NE is shown in Table 1.

Each formulation contains paliperidone 5 mg/mL.

Preparation of solution

The PS (5 mg/mL) meant for the comparative evaluation was prepared by dissolving PALI (50 mg) in 10 mL of propylene glycol (PG).

3. RESULT AND DISCUSSION

NE formulation containing Paliperidone was successfully developed using for the purpose of improving its solubility and transnasal delivery, which can be further utilized for its preclinical evaluation. Screening of formulation components helped to identify the most suitable excipients, whereas phase diagrams gave a good idea about the concentrations of the formulation components that should be used to achieve NE. Collectively, the results demonstrate that PM13, due to its appropriate physicochemical properties, optimum surfactant and co-surfactant concentrations, highest diffusion coefficient, and free from nasal cilio toxicity may be more suitable for intranasal delivery which could be developed as a novel regime for intranasal administration of PALI.

Ingredient s (w/w)	P1	P2	Р3	P4	Р5	P6	P7	P8	Р9	P10	PM1 1	PM1 2	PM1 3
Acrysol E- 150	2.38	2.08	1.85	1.70	1.56	1.43	1.75	2.05	2.4	2.3	1.70	1.56	1.43
Labrasol:pl urol oleique cc 497 (3:1)	9.52	10.4 1	11.1 1	11.9 0	12.5	12.8 6	-	-	-	-	11.9 0	12.5	12.8 6
Tween 80:propylen e glycol (1:1)	-	-	-	-	-	-	15.7 3	16.3 9	16.8 2	16.8 5			
polycarbop hil AA-1											0.5 %	0.5 %	0.5 %
Distilled water	13.1 0	12.5	12.0 4	11.3 9	10.9 3	10.7 1	7.52	6.56	5.77	5.34	11.3 9	10.9 3	10.7 1

Table - 1: The composition of the PALI loaded nanoemulsion and mucoadhesive nanoemulsion formulations

Table - 2: Calibration data of standard plot of
paliperidone.

Table - 3: Solubility Studies of Paliperidone inOils and Surfactants/Co-surfactants

r r · · ·	-						
Conc. In mcg/ml	Absor	bance 2	3	Avg. absorbance	Oils/surfactants/co- surfactants	Concentration PALI (mg/ml)	of
0	0.0	0.0	0.0	0±0	Labrasol®	0.618 ± 0.062	
2	0.112	0.116	0.115	0.114+0.002	Acrysol E-150	0.585 ± 0.002	
4	0.187	0 1 7 9	0.185	0 183+0 004	Transcutol® HP	0.245±0.025	
6	0.206	0.211	0.212	0 209+0 003	Tween® 80	1.913±0.084	
8	0.356	0.348	0.352	0.352+0.004	Tween [®] 20	0.234±0.04	
10	0 3 9 7	0 392	0 391	0 393+0 003	PEG 400	0.232±0.072	
20	0.628	0.631	0.631	0.630+0.001	Captex 100	0.016±0.0005	
30	0.943	0.938	0.936	0.939±0.001	oleic acid	0.005±0.0004	

Table - 4: Results of Pseudoternary Phase Diagram for tween 80: propylene glycol (Smix)ratio(1:1)

Amp of water (u)	Oil : Smix ratio									
Ann. of water (µi)	1:9	2:8	3:7	4:6	5:5	6:4	7:3	8:4	9:1	
10	+	+	+	+	+	+	+	-	-	
20	+	+	+	+	+	+	+	-	-	
25	+	+	+	+	+	+	-	-	-	
35	+	-	-	-	-	-	-	-	-	
45	+	-	-	-	-	-	-	-	-	
55	+	-	-	-	-	-	-	-	-	
65	+	-	-	-	-	-	-	-	-	
80	-	-	-	-	-	-	-	-	-	
100	-	-	-	-	-	-	-	-	-	
120	-	-	-	-	-	-	-	-	-	
150	-	-	-	-	-	-	-	-	-	
185	-	-	-	-	-	-	-	-	-	

235	-	-	-	-	-	-	-	-	-	
300	-	-	-	-	-	-	-	-	-	
400	-	-	-	-	-	-	-	-	-	
550	-	-	-	-	-	-	-	-	-	
900	-	-	-	-	-	-	-	-	-	
2000	-	-	-	-	-	-	-	-	-	

Table - 5: Results of Pseudoternary Phase Diagram for tween 80: propylene glycol (Smix)ratio(2:1)

Amt. of water (µl)				Oi	l : Smix	ratio			
Amt. of water (µ1)	1:9	2:8	3:7	4:6	5:5	6:4	7:3	8:4	9:1
10	+	+	+	+	+	+	+	-	-
20	+	+	+	+	+	+	+	-	-
25	+	+	+	+	+	+	+	-	-
35	+	+	+	+	+	+	+	-	-
45	+	+	+	+	+	+	+	-	-
55	+	-	-	-	-	-	-	-	-
65	+	-	-	-	-	-	-	-	-
80	+	-	-	-	-	-	-	-	-
100	+	-	-	-	-	-	-	-	-
120	+	-	-	-	-	-	-	-	-
150	+	-	-	-	-	-	-	-	-
185	+	-	-	-	-	-	-	-	-
235	-	-	-	-	-	-	-	-	-
300	-	-	-	-	-	-	-	-	-
400	-	-	-	-	-	-	-	-	-
550	-	-	-	-	-	-	-	-	-
900	-	-	-	-	-	-	-	-	-
2000	-	-	-	-	-	-	-	-	-

Table - 6: Results of Pseudoternary Phase Diagram for tween 80: propylene glycol (Smix)ratio (3:1)

Amt. of water (μl)	Oil : Smix ratio									
Ann. of water (µI)	1:9	2:8	3:7	4:6	5:5	6:4	7:3	8:4	9:1	
10	+	+	+	+	+	+	+	+	+	
20	+	+	+	+	+	+	+	+	+	
25	+	+	+	+	+	+	-	-	-	
35	+	+	+	-	-	-	-	-	-	
45	+	+	-	-	-	-	-	-	-	
55	+	-	-	-	-	-	-	-	-	
65	+	-	-	-	-	-	-	-	-	
80	-	-	-	-	-	-	-	-	-	
100	-	-	-	-	-	-	-	-	-	
120	-	-	-	-	-	-	-	-	-	
150	-	-	-	-	-	-	-	-	-	
185	-	-	-	-	-	-	-	-	-	

-										
	2000	-	-	-	-	-	-	-	-	-
	900	-	-	-	-	-	-	-	-	-
	550	-	-	-	-	-	-	-	-	-
	400	-	-	-	-	-	-	-	-	-
	300	-	-	-	-	-	-	-	-	-
	235	-	-	-	-	-	-	-	-	-

Table - 7: Results of Pseudoternary Phase Diagram for labrasol: plurol oleique CC 497 (Smix)ratio(1:1)

Amt of water (ul)				Oi	l : Smix	ratio			
Ann. of water (µ1)	1:9	2:8	3:7	4:6	5:5	6:4	7:3	8:4	9:1
10	+	+	+	+	+	+	+	+	+
20	+	+	+	+	+	+	+	+	+
25	+	+	+	+	+	+	-	-	-
35	+	+	+	+	+	-	-	-	-
45	+	+	+	+	-	-	-	-	-
55	+	+	+	-	-	-	-	-	-
65	+	+	-	-	-	-	-	-	-
80	+	+	-	-	-	-	-	-	-
100	+	+	-	-	-	-	-	-	-
120	+	-	-	-	-	-	-	-	-
150	+	-	-	-	-	-	-	-	-
185	+	-	-	-	-	-	-	-	-
235	+	-	-	-	-	-	-	-	-
300	+	-	-	-	-	-	-	-	-
400	-	-	-	-	-	-	-	-	-
550	-	-	-	-	-	-	-	-	-
900	-	-	-	-	-	-	-	-	-
2000	-	-	-	-	-	-	-	-	-

Table - 8: Results of Pseudoternary Phase Diagram for labrasol: plurol oleique CC 497 (Smix)ratio(2:1)

Amt. of water (ul)		Oil : Smix ratio										
Aint. of water (µ)	1:9	2:8	3:7	4:6	5:5	6:4	7:3	8:4	9:1			
10	+	+	+	+	+	+	+	+	+			
20	+	+	+	+	+	+	+	+	+			
25	+	+	+	+	+	+	-	-	-			
35	+	+	+	+	+	-	-	-	-			
45	+	+	+	+	-	-	-	-	-			
55	+	+	+	-	-	-	-	-	-			
65	+	+	-	-	-	-	-	-	-			
80	+	+	-	-	-	-	-	-	-			
100	+	+	-	-	-	-	-	-	-			
120	+	-	-	-	-	-	-	-	-			

150	+	-	-	-	-	-	-	-	-
185	+	-	-	-	-	-	-	-	-
235	+	-	-	-	-	-	-	-	-
300	+	-	-	-	-	-	-	-	-
400	-	-	-	-	-	-	-	-	-
550	-	-	-	-	-	-	-	-	-
900	-	-	-	-	-	-	-	-	-
2000	-	-	-	-	-	-	-	-	-

Table - 9: Results of Pseudoternary Phase Diagram for labrasol: plurol oleique CC 497 (Smix)ratio(3:1)

Aret of water (u)				Oil	: Smix ra	tio			
Amt. of water (µI)	1:9	2:8	3:7	4:6	5:5	6:4	7:3	8:4	9:1
10	+	+	+	+	+	+	+	+	+
20	+	+	+	+	+	+	+	+	+
25	+	+	+	+	+	+	+	+	-
35	+	+	+	+	+	+	+	+	-
45	+	+	+	+	+	+	-	-	-
55	+	+	+	+	+	+	-	-	-
65	+	+	+	+	-	-	-	-	-
80	+	+	+	+	-	-	-	-	-
100	+	+	+	-	-	-	-	-	-
120	+	-	-	-	-	-	-	-	-
150	+	-	-	-	-	-	-	-	-
185	+	-	-	-	-	-	-	-	-
235	+	-	-	-	-	-	-	-	-
300	+	-	-	-	-	-	-	-	-
400	-	-	-	-	-	-	-	-	-
550	-	-	-	-	-	-	-	-	-
900	-	-	-	-	-	-	-	-	-
2000	-	-	-	-	-	-	-	-	-

Table - 10: Physicochemical parameters and cumulative percentage release of PALI loaded nanoemulsion formulations (mean \pm SD, n = 3)

Formu lation code	рН	Condu ctivity (mS/c m)	% transmi ttance	Refrac tive Index	Viscosi ty (cP)	Globu le size (nm)	PDIa	Zeta poten tial (mV)	Drug conte nt (%)	Perce ntage cumul ative releas e (%)
P1	5.22 ±	0.110 ±	98.33 ±	1.336	112.47	117.3	0.189	-26.2	99.00	71.28
	0.01	0.01	0.51	± 0.01	± 1.20	± 1.17	± 0.01	± 1.53	± 0.25	± 0.53
P2	5.32 ±	0.121 ±	99.33 ±	1.340	109.27	98.9 ±	0.132	-21.3	97.93	73.88
	0.01	0.03	0.59	± 0.02	± 0.60	1.8	± 0.02	± 1.68	± 0.50	± 0.77

Р3	5.36 ±	0.130 ±	98.67 ±	1.336	107.07	58.5 ±	0.210	-14.4	98.60	79.03
	0.01	0.01	0.55	± 0.02	± 0.42	1.03	± 0.02	± 2.07	± 0.20	± 0.24
P4	5.65 ±	0.108 ±	98.33 ±	1.337	103.83	43.2 ±	0.152	-25.1	99.47	81.25
	0.02	0.01	1.00	± 0.02	± 0.35	1.21	± 0.15	± 1.21	± 0.52	± 1.11
Р5	5.61 ±	0.151 ±	98.67 ±	1.341	101.80	32.3 ±	0.129	-24.3	99.73	83.81
	0.01	0.02	0.58	± 0.01	± 0.61	1.44	± 0.01	± 1.89	± 0.60	± 0.18
P6	5.90 ±	0.124 ±	99.33 ±	1.336	98.90 ±	28.8 ±	0.14 ±	-16.6	99.47	85.09
	0.01	0.01	0.60	± 0.01	1.60	2.18	0.02	± 1.34	± 0.30	± 0.78
P7	5.22 ±	0.165 ±	98.00 ±	1.336	294.73	72.2 ±	0.217	-23.5	98.20	76.42
	0.01	0.02	1.00	± 0.02	± 1.38	1.32	± 0.02	± 2.1	± 0.23	± 0.60
P8	5.28 ±	0.107 ±	97.33 ±	1.336	306.97	83.5 ±	0.214	-16.2	98.00	74.82
	0.01	0.01	0.62	± 0.03	± 0.51	1.46	± 0.02	± 1.78	± 0.21	± 0.68
Р9	5.31 ±	0.140 ±	97.33 ±	1.335	313.57	121.8	0.263	-24.8	98.07	70.07
	0.02	0.02	0.67	± 0.01	± 0.47	± 2.23	± 0.02	± 1.38	± 0.12	± 0.86
P10	5.48 ±	0.146 ±	97.67 ±	1.337	319.13	137.5	0.173	-25.5	98.60	63.33
	0.02	0.02	1.53	± 0.02	± 1.59	± 1.2	± 0.01	± 1.45	± 0.15	± 0.49
				^a Polyd	ispersity Iı	ndex				

Table - 11: Drug release profile of nanoemulsion formulations										
Time in min	Cumu	Cumulative % Drug release								
1 me m mm	P1	P2	P3	P4	P5	P6	P7	P8	P9	P10
30	5.24	4.65	8.43	6.73	7.35	8.46	6.72	6.14	4.56	2.55
60	11.65	12.35	18.03	13.52	21.22	19.73	14.81	12.35	10.66	9.05
120	22.96	26.89	39.93	38.32	39.45	38.73	43.08	29.74	19.25	20.36
180	63.85	46.63	59.48	50.75	56.63	60.45	47.8	52.49	43.55	37.71
240	71.28	73.88	79.03	81.25	83.81	85.06	76.42	74.82	70.07	63.33

 Table - 12: Characterization parameters of PALI solution (PS) and optimized PALI mucoadhesive nanoemulsion (PMNE)

Formulati on code	рН	Conductivi ty (mS/cm)	Viscosity (cP)	Globule size (nm)	PDI ^a	Zeta potential (mV)	Drug content (%)
PS	5.51 ± 0. 03	-	-	-	-	-	99.34 ± 0. 35
PM11	5.61 ± 0.	0.110 ± 0.0	124.27 ± 1.	47.4 ± 2.	0.210 ± 0.	-31.3 ± 1.	99.75 ± 0.
	02	1	10	11	01	54	68
PM12	5.68 ± 0.	0.121 ± 0.0	119.47 ± 0.	43.3 ± 1.	0.143 ± 0.	-32.9 ± 1.	99.15 ± 0.
	02	1	65	24	02	70	61
PM13	5.97 ± 0.	0.130 ± 0.0	116.73 ± 0.	31.1 ± 1.	0.178 ± 0.	-29.7 ± 1.	99.60 ± 0.
	02	1	95	44	04	14	53
^a Polydispersity Index							

Time in min	Cumulative amount of drug							
-	PM11	PM12	PM13	PS				
30	354	463	579	781				
60	486	581	853	945				
120	978	1146	1363	1432				
180	1257	1378	1485	1562				
240	1423	1584	1867	2143				

Table - 13: Cumulative amount of drug permeated per unit area versus time profile of PS, PM11, PM12 and PM13

Table - 14: Steady state flux, enhancement ratio, diffusion co-efficient and modeling parameters of PALI solution (PS) and paliperidone loaded mucoadhesive nanoemulsions (PM11, PM12 and PM13) (mean \pm SD, n = 3)

Formulatio	Steady state	Enhancemen	Diffusion co-efficient	Modelin	Modeling parameters			
n	flux (Jss) (μg/cm²/min)	t ratio (E _r)	$(E_r) \qquad (cm^2/min)$		First-Higuchorderi (r 2)(r 2)			
PS	4.573 ± 0.21	1.00	$1.84 \times 10^{-5} \pm 0.013 \times 10^{-5}$	0.911 2	0.882 0.9805 6			
PM11	3.544 ± 0.27	0.77	$1.42 \times 10^{-5} \pm 0.019 \times 10^{-5}$	0.921 1	0.971 0.9746 8			
PM12	4.679 ± 0.50	1.03	$1.89 \times 10^{-5} \pm 0.015 \times 10^{-5}$	0.932 9	0.963 0.9897 4			
PM13	5.072 ± 0.13	1.10	$2.04 \times 10^{-5} \pm 0.022 \times 10^{-5}$	0.943 8	0.938 0.9877 7			

Table - 15: Results of stability testing of the PALI nanoemulsion (P-NE) and PALI mucoadhesive nanoemulsion containing 0.5 % (w/w) polycarbophil (PM-NE) (n = 3) for 6 months

Test		P6	PM13		
% Assay	7	99.47 ± 0.306	99.6 ± 0.529		
% Trans	smittance	99.33 ± 0.58	-		
Globule	size (nm)	28.8 ± 2.18	31.1 ± 1.44		
Polydisp Index	persibility	0.140 ± 0.025	0.178 ± 0.035		
Zeta (mV)	potential	-16.6 ± 1.34	-29.7 ± 1.14		

calibration curve of paliperidon

Figure - 1: calibration curve of paliperidon.

Figure - 2: Solubility Studies of Paliperidone.

(A), (B), (C)

Figure - 3: The pseudo ternary phase diagrams of the Acrysol E-150, tween 80: propylene glycol (Smix), water system at the 1:1 (A), 2:1 (B) and 3:1 (C) weight ratios of Smix (Km) at

ambient temperature. The dark area represents nanoemulsion region.

(A),(B),(C)

Figure - 4: The pseudo ternary phase diagrams of the Acrysol E-150, labrasol: plurol oleique CC 497 (Smix), water system at the 1:1 (A), 2:1 (B) and 3:1 (C) weight ratios of Smix (Km) at ambient temperature. The dark area represents nanoemulsion region.

Figure - 5: Cumulative percentage release of nanoemulsion formulations P1 to P10.

Figure - 6: Cumulative amount of drug permeated per unit area versus time profile of PS, PM11, PM12 and PM13.

Figure - 7: Photographs of goat nasal mucosa demonstrating histological characteristics

when treated with (a) phosphate buffer saline pH 6.4 (b) isopropyl alcohol and (c) paliperidone loaded mucoadhesive nanoemulsion.

Figure - 8: Infra red spectra of (a) paliperidone (b) plain nanoemulsion (c) paliperidone loaded nanoemulsion and (d) paliperidone loaded mucoadhesivenanoemulsion.

4. CONCLUSION

This work consists of compatibility test, construction of the pseudo ternary phase diagram to know the range of nanoemulsion, selection of the formulation and incorporation of the drug, evaluation of the formulation, bioanalytical analysis and stability study. All results are promising and presented in tabulated form.

5. REFERENCES

- 1. Canuso CM et al. Paliperidone extendedrelease tablets in schizophrenia patients previously treated with risperidone. IntClinPsychopharm 2008; 23:209–215
- 2. Patel RB et al. UV SPECTROPHOTOMETRIC method development and validation: quantification of paliperidone in formulations and in vitro release study. **Anal Methods** 2010; 2:525–531
- Patel RB et al. Paliperidone loaded mucoadhesivemicroemulsion in treatment of schizophrenia: formulation consideration. J Pharm Inn 2013; 8:195–204.
- Patel RB et al. Risperidone microemulsion for transnasal delivery: pharmacodynamic and pharmacokinetic evaluation. Pharm Nanotechnol 2013; 1:44–53.
- 5. Kumar MS et al. Development of analytical method for risperidone by uv spectrophotometry. **Int. J. of pharma sci. and research** 2010 1(2):122-126.

- 6. Elshafeey AH et al. Intranasal microemulsion of sildenafil citrate: in vitro evaluation and in vivo pharmacokinetic study in rabbits. **AAPS Pharm Sci Tech** 2009 10:361–364.
- 7. Jogani VV et al. Intranasal mucoadhesivemicroemulsion of tacrine to improve brain targeting. Alzheimer **Dis AssocDisord**2008; 22:116–124.
- 8. Kumar M et al. Mucoadhesivenanoemulsionbased intranasal drug delivery system of olanzapine for brain targeting. **J Brain Targ** 2008; 16:806–814.
- 9. Patel MR et al. Effect of formulation components on the in vitro permeation of microemulsion drug delivery system of fluconazole. **AAPS Pharm Sci Tech** 2009 10:917–923.
- Kumar M et al. Formulation and characterization of nanoemulsion based drug delivery system of risperidone. Drug Dev Ind Pharm 2009; 35:387–39
- 11. Azeem A et al.Nanoemulsion components screening and selection: a technical note. **AAPS Pharm Sci Tech** 2009; 10:69–76.
- 12. Borhade V et al. Clotrimazole nanoemulsion for malaria chemotherapy. Part I: preformulation studies, formulation design and physicochemical evaluation. **Int J Pharm** 2012; 431:138–148.
- 13. Pierre MB et al.Acrysol E-150 as optimizer of the skin delivery of 5-aminolevulinic acid in photodynamic therapy. **Pharm Res** 2006; 23:360–366.
- 14. Barakat NS et al. Carbamazepine uptake into rat brain following intra-olfactory transport. J Pharm Pharmacol2006; 58:63–72.
- 15. Jadhav SA et al. Stress degradation behavior of paliperidone, an antipsychotic drug, and development of suitable stability-indicating RP-LC method. **Chromatogr Res Int** 2011; 1–10.
- 16. Karasulu E et al. Permeation studies and histological examination of goat nasal mucosa following administration of different nasal formulations with or without absorption enhancers. **Drug Del** 2008; 15:219–225.
- 17. Sharma G et al. Intranasal cabergoline: pharmacokinetic and pharmacodynamic studies. **AAPS Pharm Sci Tech**. 2009; 10:1321–1330.